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Figure 1: We present a volume-based approximation of strand-based hair that is suitable for level-of-detail minification. It scales better than
existing raster-based solutions with increasing distances, and can be combined with them, to create a hybrid technique. This figure shows the
split alpha blended level-of-detail transition between our strand-based rasterizer (left side) and its volume-based approximation (right side).
The four subfigures on the right showcase the Bear’s individual components: Kajiya-Kay shading, tangents, shadows and ambient occlusion.

Abstract

Rendering hair is a challenging problem for real-time applications. Besides complex shading, the sheer amount of it poses a lot
of problems, as a human scalp can have over 100,000 strands of hair, with animal fur often surpassing a million. For rendering,
both strand-based and volume-based techniques have been used, but usually in isolation. In this work, we present a complete
hair rendering solution based on a hybrid approach. The solution requires no pre-processing, making it a drop-in replacement,
that combines the best of strand-based and volume-based rendering. Our approach uses this volume not only as a level-of-detail
representation that is raymarched directly, but also to simulate global effects, like shadows and ambient occlusion in real-time.

CCS Concepts

» Computing Methodologies — Rasterization; Visibility; Volumetric Models; Antialiasing; Reflectance Modeling; Texturing;

1. Introduction

Hair rendering and simulation are challenging problems in the field
of computer graphics due to the complex nature of hair [WBK*07].
The human scalp typically has over 100,000 sub-pixel sized strands
of hair attached to it [WBK*(07], making it non-trivial to accurately
represent in practice. There are two main models to represent hair:
as a volume, or by using explicit hair strands [WBK*07]. Each of
these have their own strengths and weaknesses; with volume-based
representations for instance, finding effects like ambient occlusion
is trivial [HLY 10], but not in strand-based representations, that use
rasterization, leading to cheap screen-space techniques. In real-time
applications, such as games, the most widely used representation in
practice is to use explicit hair strands [NDO5; YT10; MET*14], as
they have proven to work well in real-time hair simulation [Han14].
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Hair rendering still remains a challenging problem, however, as
existing raster-based solutions [ND05; MET*14] only have enough
budget to render a couple of characters on the screen at once in real-
time frames. This happens because rasterization does not scale well
for this type of sub-pixel sized geometry [Ric14], for instance, with
far away hair. Games typically solve this scaling problem by using
a level-of-detail scheme, like reducing the number of hair strands
dynamically [YT10; SD15], and compensating for any volume loss
by making strands thicker. This last approach suffers from the same
dilemma found in mesh simplification [CMS98], as visual features
important to the hair style could be evicted by accident. Yet another
issue with strand-based rasterization, is that global effects, such as
ambient occlusion, are not easy to compute accurately in real-time.
In this paper we present a new approach that uses both strand-based
and volume-based representations, a hybrid, to resolve these issues.
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Our contribution is a real-time hybrid hair rendering pipeline that
uses strand- and volume-based representations together. It is faster,
and scales better, for far away distances when compared to existing
purely strand-based rasterizers like TressFX. We do this by finding
a volumetric approximation of the strand-based representation with
a fast voxelization scheme. This volume is used to do raymarching,
and then shading on an isosurface, providing a novel level-of-detail
minification technique for strand-based hair. It can be used together
with a strand-based rasterizer to create a full hair rendering solution
that smoothly scales in the performance & quality domain. We also
use the volume to estimate global effects, like ambient occlusion, a
problem that’s not solvable with strand-based rasterization by itself.
Pre-processing is not required in our pipeline, and can even be used
for fully animated or simulated hair, as it voxelizes once per-frame.

We start off by talking about existing work within hair rendering,
and then describe our hybrid hair rendering pipeline. We later show
results that demonstrate the benefits of our method, and talk about
its limitations. All the source code for the reference implementation
is available from: https://github.com/CaffeineViking/vkhr.

2. Related Work

Several hair rendering frameworks have been presented in real-time
computer graphics. Most of these are strand-based [YYH*12], and
support light scattering, self-shadowing and transparency, as these
are important aspects in hair rendering [WBK*07]. The framework
by Yuetal. [YYH*12], that is also used for TressFX 3.1 [MET*14],
is used in real-time applications, such as games [Lac13; SD15], but
doesn’t allow for more than a few characters to be on the screen at
the same time. Our hair rendering pipeline is able to render multiple
hair styles, by using a scalable level-of-detail minification based on
a volumetric approximation of hair that is raymarched in real-time.

Rendering hair as a volume has been done before for both offline
[PHAOS5; MWMOS; XDY*15] and interactive [RZL*10; XDY*12]
settings. In our solution we use this volume for many purposes, not
only for rendering. This includes using it as a scalable complement
to strand-based rasterization that can be used for real-time contexts.
This has not been explored in previous work within hair rendering.

However, strand-based methods result in higher-quality hair, and
are generally used for simulation [Han14] in real-time applications.

The only other work which combines strand-based and volume-
based representations into a hybrid approach for hair rendering is
Andersen et al. [AFFC16]. They use it for fur rendering, as explicit
hair strand geometry is not suitable to model undercoat hairs, while
volume textures excel at it. While they also use the raymarcher and
rasterizer together, like us, they do not use it for hair level-of-detail.

Another paper that proposes a hybrid level-of-detail approach is
Loubet and Neyret [LN17]; they use a mesh for macroscopic details
and switch to a pre-filtered volume for microscopic surfaces. It’s a
appearance preserving technique for complex geometry, that scales
across different LoDs. This technique can be used in hair rendering,
but because of its expensive pre-filtering [HDCD15], it can not be
used in real-time, since hair could be animated. The most common
level-of-detail approach for games is to reduce the hair strands like
in Steward et al. [SD15]. Ward et al’s. [WLJ*03] method is better at
preserving visual details, but it comes with a greater run-time cost.

3. Hybrid Hair Rendering Pipeline

The input to our pipeline consists of hair strands, which we model
as an array of straight-line segments, as shown in Figure 2. This is
a common way to model hair [WBK*07], and it is used by several
existing systems, such as TressFX, for both simulation [Han14] and
rendering [MET*14]. Some of these renderers, including TressFX,
expand these segments into billboards to support varying the strand
thickness [YT10]. While there is nothing limiting our pipeline from
also doing this, we have chosen to use line rasterization directly, as
it leads to a fast coverage algorithm, and also because the expansion
to camera-facing triangles is expensive [ YT10]. This means that all
strands have constant radius in our pipeline, and are assumed to be
of sub-pixel size [LTT91], to simplify our volume-based technique.

a strand of hair

vertex
root

Figure 2: The geometry given to our pipeline, and its terminology.

Overview. The pipeline itself consists of a strand-based rasterizer,
similar to the one in TressFX, and a volume-based approximation
of the rasterizer’s output. Our approach is to use this approximation
for level-of-detail, as the raymarcher has better performance scal-
ing with distance than the rasterizer. The idea is to use the high-
quality rasterized results for “close-up shots”, and the fast but also
scalable raymarcher for the far-away cases. The output from both
renderers are closely matched, making the transition between them
seamless. A simple dithered or alpha blended transition is enough
to mix them. Since both of the solutions use the same hair geometry
as input, our pipeline easily integrates into existing hair renderers,
such as TressFX, that already have strand-based hair for simulation.

Strand-Based Rasterizer. Our rasterized solution renders strands
of hair as line list primitives with the GPU’s built-in line rasterizer,
and shades each fragment using a hair strand lighting model which
uses tangents for shading. Since hair is sub-pixel sized [LTT91], it
leads to high aliasing, which we solve by using the pixel coverage
of a line for anti-aliasing. Hair is not completely opaque [SAOS],
and since our coverage calculation modifies the alpha component,
we need to sort, and then blend, the fragments in the correct order
to handle strands with transparency. Another important property of
hair are self-shadows [WBK*07], that we solve with a approximate
technique, that we later generalize using a volume. This results in a
high-quality, but expensive, real-time solution which scales poorly.

Volume-Based Approximation. To make up for this weakness in
our rasterizer, we developed a volumetric hair approximation that is
faster to compute, and that scales better with increasing distances,
when comparing it against our rasterized solution. These properties
make it a good level-of-detail technique for hair. The idea is to find
a density volume with strand voxelization, and then use that for ray-
marching. In order to approximate the shading of the rasterizer we
also need to voxelize the strand’s tangents. To find an isosurface to
shade we accumulate the density (which is the same as the number
of strands in the way) until a threshold is reached. Since we don’t
shade inside the volume (as that’s too expensive) the transparency
also needs to be approximated by treating dense regions differently.
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We approximate the strand self-shadowing component by using
the volume as well, as a raymarch towards the light source gives us
the number of occluding hair strands. This is the same information
needed for our rasterizer’s self-shadowing model, which we simply
plug in. To also account for the ambient occlusion going on around
a strand, we accumulate the number of strands inside a sphere. This
leads to a visibility component that our rasterizer also needs to use.

Since both the rasterizer and raymarcher use similar techniques
for each component, the level-of-detail transition becomes smooth.

Because hair is not usually static, the underlying geometry may
change in-between frames as part of a simulation or animation pass.
This means pre-computations are generally not possible, unless the
geometry can be assumed to be static (e.g. short hair). Our pipeline
is quite flexible, and re-computes its components every frame. If the
hair is static, our strand voxelization and ambient occlusion passes
can be pre-computed once, or at simulation frequency, to save time.

In the following sections we go into more detail on how we have
solved each of these problems, and how these tie into our pipeline.

3.1. Lighting Model

After rasterizing the strand segments with the GPU’s line rasterizer,
we shade each fragment with Kajiya-Kay’s [KK89] lighting model,
that estimates the light scattering inside a strand with a diffuse and
specular term. It is not physically-based [MJC*03; dFH*11], but it
is still widely used [WBK*07; YT10] for real-time applications for
its simplicity and performance (or variants of it [Sch04; MET*14]).

For a single light source, it produces the characteristic highlights
of hair as shown in Figure 3, which are based on a strand’s tangent.
Because hair is very thin, rasterization leads to aliasing artifacts as
shown on the left. We solve this issue in Section 3.2, and also blend
transparent strands. This still leads to unnaturally flat-looking hair,
because self-shadows are not fully accounted for until Section 3.4.

This lighting model uses the fangent for shading, which is trivial
to find in rasterization: (Q —P) = |Q — P|, but not within a volume.
We show how to voxelize these and use it for shading in Section 3.3.

Figure 3: Kajiya-Kay shaded results from our strand rasterizer, on
the left without any anti-aliasing, and with our coverage method on
the right. A correct blending order is needed, since our calculation
modifies the alpha channel (we use a PPLL to sort these fragments).
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3.2. Transparency and Anti-Aliasing

Because strand rasterization by itself gives severely aliased results,
we need an anti-aliasing solution to remove these artifacts. A naive
solution would be to use MSAA, and while this reduces aliasing, it
comes at a significant cost, that also doesn’t solve for transparency,
that we need for natural hair. Instead we choose to find the strand’s
pixel coverage in screen-space, which we can use to vary the strand
opacity based on pixel coverage [Per12]. This method does not re-
quire any extra fragments to be evaluated, but because our strands
are now transparent, these fragments need to be sorted and blended
in the right order. But since hair strands are already non-opaque, we
would have to handle transparency anyway. We start by explaining
our coverage algorithm, and then show our transparency technique.

Coverage. Our coverage calculation is similar to GPAA [Per12],
but without the post-processing pass, as we only need to draw lines.
The idea is to render the lines with constant width, and then when
shading the line, find the distance between its center and the shaded
fragment (that will be non-zero as long as the line width is not 1). In
practice, this means converting the interpolated vertex positions in
the fragment shader to screen-space, and then finding the distance
from thatto g1_FragCoord, and dividing by the line width to get
a normalized number. Below is how it looks like as a GLSL shader.

float strand_coverage (vec2 screen_fragment, vec4 world_line,

1

2 mat4 view_projection, vec2 resolution,
3 float line_thickness) {

4 vecd clip_line = view_projection * world_line;

5 vec3 ndc_line = (clip_line.xyz / clip_line.w);

6 vec2 screen_line = ndc_line.xy;

7 screen_line = (screen_line + 1.0f) » (resolution / 2.0f);
8 float d = length(screen_line-screen_fragment);

9 return 1.00f - (d / (line_thickness / 2.00f));

10 }

Sorting and Blending. In order to draw transparent strands of hair
we need to sort and blend the non-opaque hair fragments in back-
to-front order. There are several of ways to solve this [MCTB11],
with their own set of strengths and weaknesses. We have chosen to
use the same transparency solution as TressFX [MET*14], as that
has been proven to work for real-time hair rendering. It is based on
the method by Yu et al. [YYH*12], which uses a Per-Pixel Linked
List (PPLL) [YHGT10] and k-buffer approach [BCL*07] to handle
transparency. For it to work, writes to the depth buffer are disabled.

Instead of composing our fragments directly to the render target,
we insert them into a PPLL with their color and depth information.
It is built concurrently on the GPU [YHGT10], and is then sorted in
parallel based on depth in a separate resolve pass. We use the same
approach as in TressFX, and only blend the first k£ fragments in the
correct order, while the remaining are merged order-independently.

By using a k-buffer with 16 elements, we get results like those
on the right of Figure 3. Most of the aliasing artifacts are now gone,
and because we have now also taken into account the opacity of the
strands, the shading is smoother and more natural. The problem is
that this is expensive, as the hair in Figure 3 takes between 5-6ms
to render. This would only allow us to render a couple of characters
on the screen at once. Even worse, the performance doesn’t scale
nicely with distance, as the same hair style, but only covering 0.5%
of the display (instead of 30%), takes 3ms. In the next section we
present our level-of-detail technique that improves on these aspects.
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3.3. Level of Detail

While the strand-based rasterizer we have described so far produces
fine-grained results for each individual hair strand, making it suit-
able for close-up shots, performance does not scale proportionally
with increasing distance (and fragments shaded). For far-away hair
these details will not be noticeable anyway. Thus, in order to render
more than a couple of characters on the screen at once, in real-time,
we need a scalable level-of-detail scheme. A commonly used one is
to reduce the number of hair strands based on distance [WBK*07].
This removes visual features from the hair that could be important
to the hair style. A critical part of a good level-of-detail scheme is
that the transitions should be seamless. The way to circumvent this
is to have an artist markup important regions of the hair style, and
only evict these strands as a last resort. Another common solution in
games [Lac13] is to have artists hand-tailor different assets for each
level-of-detail. Both of these solutions require varying amounts of
manual work by the artist. It would be economical if there was an
automatic technique that does not suffer from these same problems.

Instead, we use a volume-based approximation of this hair style
as level-of-detail. This representation has many benefits over these
raster-based level-of-detail schemes, as it uses raymarching instead
of rasterization. Rasterization performs badly on this type of small
geometry, as it is numerous, and, whenever projected from far-away
distances, falls only onto a few thousand fragments. This becomes
especially problematic when used with our transparency technique,
as the PPLL will have a lot of fragments to sort and blend per-pixel.
Raymarching on the other hand, thrives in these situations, as it gets
linear performance scaling based on the number of fragments. Our
volume used for raymarching is derived from the original geometry,
and not a reduced version of it, which means it will retain all of the
visual features of the original hair style, but in a discretized format.
Since this voxelization can be done on-the-fly, it doesn’t need any
artist intervention, and can be used with animated or simulated hair.

Our volume-based approximation for strand-based hair uses the
same underlying geometry as before: line segments. It takes these,
and voxelizes them into two different volumes: the density volume,
and the rangent volume with GPU-based compute. The densities are
used to represent the number of strands that have passed through a
voxel, which we use to do our raymarch later. The tangents are also
needed as a volume because they can’t be derived from the density,
unlike the normals which are just —Vd, the gradient of the density.

We use these volumes to approximate the rasterizer’s shading on
an isosurface. In our pipeline this means finding approximations of
the lighting model, self-shadowing algorithm, and transparency in a
volume. More lighting components can likely also be approximated
in real-time by using these volumes, but we have chosen to limit us
to the subset of effects that are commonly used when rendering hair
in real-time. We show how to approximate self-shadowing and the
ambient occlusion in Section 3.4. Before we can do this though, we
need to find an isosurface to shade on. In our approach, we do not
use Direct Volume Rendering (DVR) [HKSBO06], as shading inside
the volume would be too expensive for our real-time needs. Instead,
we only do shading on an isosurface. We start with explaining how
to find this isosurface, and then go on to show how to do shading on
it by using the volumes we have derived. We also show how to fake
transparency without having to use DVR, by using the hair density.

Surface. We start by building an AABB of the hair by expanding a
cuboid with each incoming vertex. This is our proxy geometry, that
houses our volume data, and which we use for raymarching. As we
can’t render volumes with a rasterizer, we render our cuboid, which
gives us the fragment f on its surface. We use f and the eye e to find
the direction f — e in which we should be raymarching into, with an
origin set for f, we raymarch into this direction with constant steps.

Next, we want to find an isosurface s inside this volume to do all
our shading on. As we mentioned before, the hair densities contain
the number of strands passing through each voxel. A raymarch from
a voxel at a to another voxel at b gives us the number of hair strands
in-between them. We use this to find the isosurface s, as we classify
a surface as “solid” only if it passes a minimum strand count. With
a raymarch from f launched towards f — e, we accumulate strands
until a “solid” isosurface s is found. We use this surface s to do our
shading. In order to “fake” transparency we also shade “non-solid”
isosurfaces, by finding the first intersection: a non-empty voxel, and
changing its opacity based on the density. This leads to a smoother
level-of-detail transition, especially for low-density (stray) regions.

Shading. Shading is straightforward once this isosurface is found,
and as long as a tangent volume can be voxelized. We simply shade
the fragment using standard Kajiya-Kay shading, by using the same
shader as our rasterizer, but replacing the analytical tangent with an
approximation, found by querying the tangent volume at s. We use
a direct translation of Kajiya-Kay’s [KK89] algorithm for shading.

Figure 4: Comparison between the rasterized tangents (on the left),
and their volumetric approximation (on the right). We find it by first
quantizing the tangents, voxelizing them, and then finding the mean
tangent vector after de-quantization for use in Kajiya-Kay shading.

Strand Voxelization. Finding the strand density can be done fast
with GPU compute. Each voxel stores a 8-bit counter that tells us
how many strands are in it. This means we can keep track of up to
255 strands of hair per voxel. The voxelization happens by translat-
ing the hair style’s vertices to volume-space (with just a coordinate-
change) and increasing the counter of the voxels its mapped to. For
GLSL, the imageAtomicAdd function can be used to increment
this counter asynchronously. This is an approximation, and leads to
“gaps” in the volume (because of line spacing), which we cover by
using a filter. We have found this to work well in practice for our
hair styles, but for the cases where segments are long, this approach
will break down, as repairing the volume will require bigger filters.

To find the tangent volume we use something similar, but we find
the average direction instead of the sum. We start by quantizing our
tangents from [—1.0,+1.0] into [0,255] per-channel, and summing
those values up, just as for the density volume. The trick is then to
divide this by the number of hair stands in each voxel, which is the
same as our density volume, and then de-quantizing it from [0,255]
back into [—1.0,+1.0] when shading. See Figure 4 for these results.
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Figure 5: Differences between the raytraced ambient occlusion on
the left, and our volume-based approximation of it on the right. The
middle result is the AO from our strand-based rasterizer, which also
uses a volume. We have used a 256> -sized hair volume for this case.

3.4. Self-Shadowing

After solving transparency and light scattering, our results shown
in Figure 3 will still be flat looking, because strand self-shadowing
is an essential part of rendering realistic hair [WBK*07]. There are
several self-shadowing algorithms in related work, but we need one
that is fast, and which maps to both rasterization and raymarching.

‘We have chosen to use a novel technique due to Lacroix [Lac13],
that is used in Tomb Raider and TressFX [MET*14; SD15], as it is
very fast, and only requires one single shadow map per light source,
which is not true for Deep Opacity Maps [YKOS]. It’s based on an
approximation of the Deep Shadow Map (DSM) [LV00], called the
Approximated DSM (ADSM). First it finds the traversed depth d in
the hair by the distance between the strand fragment f and the depth
in the shadow map s. It uses the distance d to estimate the number of
strands in the way: d - r, where r is the expected spacing in-between
hair strands. These are used to find the occlusion: (1 — Oc)d’, that we
use to find the shadows for a strand with translucency o. This will
result in a smooth looking shadow, that becomes darker the further
we get inside the hair. An issue with this technique is that it assumes
constant strand spacing, which is generally not true for most styles.

Because we now have a hair density volume, we can actually use
it to find the real number of hair strands in the way without making
assumptions about the strand spacing. We raymarch in the direction
of the light source, and accumulate the number of strands we have
passed. This value is then used to replace the ad-hoc d - r in ADSM.

Ambient Occlusion. This only accounts for directional occlusion,
but we would also like to model ambient occlusion (AO), based on
nearby hair strands. This is not possible in real-time for a rasterizer,
and can’t be pre-calculated since the hair could be animated. For a
raytracer, the general approach is to shoot rays in random directions
around the sample point, and find the ratio that are being occluded.
By using our volume, we can find this AO in real-time rates as well.

Our ambient occlusion is similar to Hernell et al’s LAO [HLY 10]
and Kanzler et al. [KRW18]. A voxel with few hair strands in it will
occlude less than a voxel with many hair strands in it. We raymarch
in a sphere around our sample point, accumulating the total number
of possible occluding hair strands inside it. This ratio of occluding
hair strands is our ambient occlusion, but it needs to be tweaked to
match the raytracer’s intensity as shown in Figure 5. Our rasterizer
also uses this volume-based AO, which is calculated in every frame.
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4. Results

We have implemented our hybrid hair rendering pipeline in Vulkan,
and evaluated its performance on an AMD Radeon Pro WX 9100.
Our evaluation consists of comparing our strand-based rasterizer,
and volume-based raymarcher, in order to determine in which cases
they perform the best. Because our rasterizer is based on TressFX 3,
which in turn is derived from [YYH*12], the results we show here
should also translate over to other hair renderers built on the same
set of techniques. The benchmark scenes we have built consists of a
single directional light source pointed at a hair style, layered on top
of a polygon mesh. The hair styles we have used in our evaluations
are shown in Table 1, and are of comparable size with what is used
in hair rendering research [YKO08; RZL*10; AFFC16], and is =~ 7x
more strands of hair than used in games [Lac13]. In our benchmark
we render all of our scenarios in 1280x720 resolution (without any
MSAA), render into 1024x1024-sized 3x3 PCF shadow maps, use
voxelizations of 256°-sized volumes, and raymarch with 512 steps.

Hair Style Strands Vertices Segments Size (MB)
Ponytail 136,320 1,772,160 1,635,840 62.71
Bear 961,280 4,806,400 3,845,120 165.34

Table 1: Summary of the data sets we are using for our evaluation.

Bear Ponytail
84 MB 84 MB Device Data
VR 63 MB PPLL
358 MB Geometry

358 MB

Volume

Figure 6: GPU memory usage breakdown. Our volumes don’t have
to use inordinate amounts of memory when compared to its original
geometry, and can be adjusted by voxelizing at lower resolutions.
The primary “bottleneck” is the PPLL that’s used for transparency.

We start off with comparing the visual fidelity between our ren-
dering solutions: the rasterizer and raymarcher, and see how well
they transition in-between each other. In Figure 1 are screenshots
from our hybrid hair renderer, using the same rendering conditions
we detailed above. The left side in each individual image shows the
result of the rasterizer, while the right side shows the raymarcher’s
result. These results are alpha blended in the middle of the image
to demonstrate a level-of-detail transition. The rasterizer produces
fine details up-close, as hair strand are individually distinguishable.
This is not true for the raymarcher, as it is easy to tell which of the
sides are rasterized or raymarched for close-up shots. For far away
to medium distances however, these details are not noticeable, and
the raymarched result can be used without much loss in visual fi-
delity. Because these level-of-detail transitions are smooth, both of
these solutions can be used, the rasterizer for close-up shots, and
the raymarcher for far away shots. The reason we use a raymarcher
in these cases is because it is cheaper to compute, scales better with
distance, and is more runtime configurable, than our raster solution.
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4.1. Performance

To show the performance benefits of using our hybrid approach, we
have constructed a benchmark to compare the timing and scaling of
our rasterized and raymarched solutions. We have gathered these by
using Vulkan timestamp queries, which are averaged over a period
of 60 frames, with VSync turned off, with no other GPU workloads.

We begin by discussing the frame timings for each solution, and
show where these numbers come from. In Figure 7 we see that the
raster solution spends most of its time shading (Draw Hair Styles),
sorting, and blending transparent fragments (Resolve the PPLL). In
Bake Shadow Maps the cost may seem small, but it scales with the
number of lights in a scene, and also requires extra GPU memory.
The raymarcher on the other hand, spends most of its time shading
and raymarching (Raymarch Strands), and since it doesn’t need any
shadow maps, no extra memory is needed (besides the volume). In
both cases though, Voxelize Strands is cheap, and only takes a small
part of the rendering time, or none, if the hair can be assumed static.

Far (Covers 0.423% of the Screen) Near (Covers 36.3% of the Screen)

3.9ms
9-
Pass
@
£
; Bake Shadow Maps
E 6- Voxelize Strands
2 Clear PPLL Nodes
g Draw Hair Styles
< 1.7ms
c?:) 6.7ms Raymarch Strands
Resolve the PPLL
5.9ms
3-
2.9ms
.om:
.. 0éms i 0.6ms
Rasterizer Raymarcher Rasterizer Raymarcher

Figure 7: Averaged render times divided into rendering passes for
each renderer type. Voxelization accounts only for a fraction of the
rendering time. We rendered the Ponytail in near and far distances,
and our raymarcher outperforms the rasterizer, especially in “far”.

We have also measured performance from different distances to
see how our solutions scale. For “near” distances, e.g. in a game’s
cutscene (covering 36.3% of the screen), our raymarcher is around
twice as fast as our rasterizer, and allows twice the number of game
characters to be on the screen at once, for the same time budget. In
the far away case (0.423% of the screen), it is around 5x faster. This
performance scaling difference can more easily be seen in Figure 8.
The raymarcher scales linearly, while the rasterizer doesn’t, and the
former has a lower constant cost attached to it. While both rasterizer
and raymarcher achieve real-time frames, our results point towards
our raymarcher being more apt for level-of-detail minification than
our rasterizer, for characters with a realistic amount of hair strands.

As can be seen in Figure 10, the rasterizer scales linearly with
the hair strands, and so does our raymarcher, but with a “shallow”
slope, caused by the voxelization in Figure 9. The quality of our
raymarch and its performance can be tuned by varying the step size
in Figure 9, making it possible to change the intercept of Figure 10.
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Figure 8: Average rendering time of both solutions with decreasing
distances (i.e. increasing screen space) for the Bear hair. Note that
our raymarcher scales linearly, while the rasterizer does not, for far
away hair. The raymarcher also has a lower constant cost attached.
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Figure 9: Some performance scaling aspects in our raymarcher for
Ponytail hair. Voxelization is cheap, and performance can be tuned.
This seemingly flat region in the voxelization is not a measurement
error, we believe it to be caused by the GPU cache being populated.
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Figure 10: Average rendering time of our solutions with increasing
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slightly affected because of the voxelization cost, and will otherwise
be constant. This constant can be tuned with the raymarching steps.
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4.2. Limitations

While our strand voxelization strategy is quite fast, it does not work
well for all cases. If the spacing between strand vertices is too large,
or the grid resolution too granular, even a large reconstruction filter
won’t work, and will also yield diminishing returns in performance.
For those cases, lowering the volume resolution will help, but it will
result in a lower-quality result. A solution would be to use e.g. DDA
and rasterize the lines using compute. Our experiments have shown
that this is quite expensive, and not suitable for real-time rendering,
as confirmed by Kanzler et al. [KRW18]. A promising method that
was suggested to us is to sample the strand with the right frequency.

For mobile targets our solution may be too memory intensive, as
we saw in Figure 6, the PPLL consumes a lot of GPU memory that
is not readily available on these memory constrained platforms. We
also haven’t tried our solution with more advanced lighting models,
like [NDOS5], and it would be interesting to see if our raymarcher is
able to account for these in real-time as well, while still performing
better than the rasterizer. Another issue with our raymarcher is that
it uses constant step size, and may result in staircase artifacts. There
is also a fixed cost attached to clearing the volumes for each frame;
but the cost can be “hidden” by doing asynchronous compute work.

5. Conclusion

In this work we have presented a novel real-time hair renderer that
is based on a new hybrid approach. It uses a strand-based rasterizer
for close-ups and a volume-based approximation for level-of-detail
minification. We have shown that our raymarcher consistently out-
performs our rasterizer, especially for far away cases, since it scales
better at increasing distances. The level-of-detail transition between
them is smooth, since we estimate: light scattering, self-shadowing,
transparency, and ambient occlusion for both solutions. We find this
volumetric representation with a fast strand voxelization algorithm
that works well for many hair styles. It can be found in real-time to
support fully animated or simulated hair, which means it can easily
be added to existing hair rendering frameworks, like TressFX, that
already uses strand-based representations for their simulation pass.
We have also shown that this volume can be used to estimate global
effects, such as ambient occlusion, in real-time. This is not possible
in purely raster-based solutions, but it is with our hybrid approach.

More broadly, our paper has shown that volumetric methods are
a viable alternative to raster-based hair rendering when it comes to
real-time applications. This has largely been unexplored in related
work, as most volumetric methods are either interactive, or offline.

We expect future work to focus on improving the volume-based
approximation we have presented. The raymarcher we have shown
spends most of its time finding an isosurface, because we are doing
constant sized steps. It would be very interesting to see if an signed
distance field can be constructed in real-time, as that would improve
our raymarching time considerably, and also fix the artifacts we get
when not sampling the volume at a high enough frequency. Another
aspect that could be further explored is to try other lighting models
besides Kajiya-Kay, as we do not know if our raymarched solution
will generalize to more advanced models. Finally, it would also be
interesting to look at what other global effects can be approximated
using our density volume, and if they can still be done in real-time.
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