
Subpixel Reconstruction Antialiasing
for Deferred Shading

Matthäus G. Chajdas∗

Technische Universität München and NVIDIA
Morgan McGuire

NVIDIA and Williams College
David Luebke

NVIDIA

← Similar Time→ ← Similar Quality→

(a) 1× Shading + Box (poor, fast) (b) NEW: 1× Shading + SRAA (good, fast) (c) 16× Shading + Box (good, slow)

Figure 1: Subpixel Reconstruction Antialiasing produces an image approaching 16× supersampling quality using the shading samples from
a regular 1× grid. It applies a joint bilateral filter inside each pixel based on subpixel geometric samples in a Latin square. Scene from
Marvel Ultimate Alliance 2 (see Figure 8), courtesy of Vicarious Visions. Shown: 4 geometric samples/pixel, planes+normals depth metric.

Abstract
Subpixel Reconstruction Antialiasing (SRAA) combines single-
pixel (1×) shading with subpixel visibility to create antialiased im-
ages without increasing the shading cost. SRAA targets deferred-
shading renderers, which cannot use multisample antialiasing.

SRAA operates as a post-process on a rendered image with su-
perresolution depth and normal buffers, so it can be incorporated
into an existing renderer without modifying the shaders. In this
way SRAA resembles Morphological Antialiasing (MLAA), but
the new algorithm can better respect geometric boundaries and has
fixed runtime independent of scene and image complexity.

SRAA benefits shading-bound applications. For example, our im-
plementation evaluates SRAA in 1.8 ms (1280×720) to yield an-
tialiasing quality comparable to 4-16× shading. Thus SRAA would
produce a net speedup over supersampling for applications that
spend 1 ms or more on shading; for comparison, most modern
games spend 5-10ms shading. We also describe simplifications that
increase performance by reducing quality.

CR Categories: I3.3 [Picture/Image Generation]: Antialiasing—;
I3.7 [Three-Dimensional Graphics and Realism]: Color, shading,
shadowing, and texture—;

Keywords: antialiasing, deferred shading

∗chajdas@tum.de, {momcguire, dluebke}@nvidia.com

1 Introduction

Deferred lighting and multisample antialiasing (MSAA) are
powerful techniques for real-time rendering that both work by sep-
arating the computation of the shading of triangles from the com-
putation of how many samples they cover. Deferred lighting uses
deferred shading [Saito and Takahashi 1990] to scale complex illu-
mination algorithms up to large scenes. MSAA resolves edges by
shading multiple samples per pixel; unlike SSAA each primitive is
shaded at most once.

Unfortunately, these two techniques are incompatible (see Sec-
tion 2), so developers must currently choose between high quality
lighting and high quality antialiasing. To achieve antialiasing under
deferred lighting, programs tend to either super sample – at lin-
ear cost in the resolution – or perform Morphological Antialiasing
(MLAA) [Reshetov 2009], a sort of heuristic “smart blur” of the
final image.

We introduce a new technique for subpixel reconstruction an-
tialiasing (SRAA). The core idea is to extend the success of
MLAA-style postprocessing with enough input to accurately recon-
struct subpixel geometric edges. SRAA operates as a postprocess
that combines a G-buffer sampling strategy with an image recon-
struction strategy. The key part is to sample the shading at close
to screen resolution while sampling geometry at subpixel precision,
and then estimate a superresolution image using a reconstruction
filter. That superresolution image is then filtered into an antialiased
screen-resolution image. In practice, the reconstruction and down-
sampling occur simultaneously in a single reconstruction pass. Our
results demonstrate that SRAA can approximate the quality of su-
persampling using many fewer shading operations, yielding a net
4-16× speedup at minor quality degradation compared to shading
at each subpixel sample.

(a) Vector Input (b) 1× Shading (c) 1× Shading +
MLAA

(d) 1× Shading +
New SRAA

(e) 16384× Shading
Reference

Figure 2: Morphological Antialiasing (MLAA) overblurs some edges because it lacks geometric information. SRAA cannot reconstruct
undersampled geometry. We hypothesize as future work that merging the algorithms will be superior to either alone.

We designed SRAA specifically for games and other real-time ap-
plications that render on modern GPUs. The inputs are the screen-
resolution 1× shaded image, a superresolution depth buffer, and an
optional superresolution normal buffer. The superresolution buffers
can be rendered in a single MSAA forward-rendering pass or with
multiple 1× forward-rendering passes; we find either method re-
quires a small fraction of the total shading cost. The algorithm may
work on tiles to reduce the peak memory requirements and interop-
erate with tiled shading algorithms. This paper contributes:

• An efficient algorithm for antialiasing images as a post-
process.

• A set of simplifications allowing implementers to increase
performance for small quality reductions.

• Detailed analysis of the algorithm and comparison to
MLAA [Reshetov 2009], the current “best in class” approach
for antialiased deferred shading.

• Evaluation on real game scenes including texture, specular re-
flection, geometric aliasing, emission, and bloom.

2 Related Work
Multisample antialiasing (MSAA) was designed for forward ren-
dering and encounters severe drawbacks when used in conjunc-
tion with deferred shading algorithms [Koonce 2007; Shishkovtsov
2005]. During forward rendering, MSAA shades once per frag-
ment, the portion of a primitive intersecting the boundary of a pixel.
MSAA then writes the computed color to all samples in the pixel
covered by that fragment. Since fragments are planar and often
small in world space, the shading across a fragment can be approxi-
mated as constant in many cases and thus MSAA gives quality com-
parable to supersampling at a fraction of the cost. REYES [Cook
et al. 1987] uses a similar strategy, but with micropolygons even
smaller than the typical GPU fragment.

Deferred shading performs shading on the final samples in the
framebuffer, when fragments are no longer available. In particular,
there is no longer any information about which samples originate
from the same surface, requiring the algorithm to shade at every
sample. In this case, MSAA degenerates into brute-force super-
sampling and its benefits are lost. One can imagine various ad hoc
strategies for guessing which samples come from the same surface
during deferred shading. Such strategies will incur the overhead
of that guess, the warp incoherence of branching independently at
each pixel, and the quality cost of sometimes guessing wrong.

Like MLAA [Reshetov 2009; Jimenez et al. 2011], our algorithm
requires only one shading sample per pixel and uses shading from
adjacent pixels to increase apparent resolution. But MLAA relies
only on final colors, so it applies heuristic rules that can fail to iden-
tify some edges requiring antialiasing. Because SRAA is guided by
geometric samples, it is independent of edge orientation and avoids
certain kinds of overblurring. Since geometric samples are inex-
pensive to compute compared to the full shading, its performance is
comparable to MLAA and 1× shading with no antialiasing. Even
though MLAA works only on the final image, the runtime is not
constant but varies with the number of edges. This makes MLAA
difficult to use in games which require fixed time budgets for post-
processing effects.

SRAA is also similar to Coverage Sampled Antialiasing
(CSAA) [Young 2006], which takes advantage of additional visi-
bility samples to improve edges. However, CSAA only works with
forward rendering because the fragments corresponding to the cov-
erage masks are no longer available when a deferred shading pass
occurs.

A key operation in SRAA is joint bilateral upsampling [Kopf et al.
2007]. Many lighting algorithms operate at low resolution and
then use upsampling to reconstruct a final image at screen reso-
lution [Sloan et al. 2007; Bavoil et al. 2008; Shopf 2009; McGuire
2010]. Such approaches face two main problems: undersampling
and temporal coherence. If a feature gets missed or undersampled
at the very low source resolution, the resulting screen-space arti-
facts can become very large. Undersampling also makes these al-
gorithms prone to temporal coherence issues, which are typically
resolved by applying stronger blur. These methods tend to work
best on smooth, low-frequency input like indirect illumination.

A good filter for forward antialiasing is Konstantine et al.’s direc-
tionally adaptive filter [2009]. That takes multisampled shading
information and reconstructs it using geometric information from
neighboring pixels. Konstantine’s filter cannot be directly applied
to deferred shading.

Yang et al. [2008] pioneered the use of cross bilateral filtering to
upscale shading information. We extend their ideas to address sub-
pixel samples, which they describe as a limitation of their work:
“scenes with very fine geometric detail may not be adequately re-
produced in the low resolution buffer, resulting in artifacts.” [Yang
et al. 2008]

In independent work, Smash proposes a similar scheme [2009] for
a demoscene project, but does not report further details or analysis.

Edge

Geometric
sample

Shaded
sample

Figure 3: Reconstructing subpixel shading with SRAA. Dotted lines
show pixel boundaries; within each, there are four geometric sam-
ples (colored disks) on a 4× 4 sample grid. One of those contains
shading information (yellow disks). At each sample, we compute
bilateral weights from neighboring shading samples (arrows). A
neighboring sample with significantly different geometry is proba-
bly across a geometric edge (blue line), and receives a low weight.

Some more recent approaches lower the shading rate by adapting it
based on the geometry and shading, for instance in Nichols et al.’s
screen-space multiresolution gather methods[Nichols et al. 2010].
While these methods also achieve low shading rates, they are fo-
cused on low-frequency phenomena.

3 Algorithm
3.1 Overview
SRAA exploits the fact that shading often changes more slowly
than geometry in screen space to perform high-quality antialias-
ing in deferred rendering by sampling geometry at higher resolu-
tion than shading. We refer to geometry samples, which capture
surface properties–in our case, the normal and position of a sur-
face fragment–and shading samples, which contain a color. By
upsampling shading onto a “superresolution” image of geometric
data, SRAA creates high-resolution shading data suitable for filter-
ing back down to screen resolution.

SRAA requires two modifications to a standard rendering pipeline.
First, applications must generate normal and position information
at subpixel resolution. See Section 3.4 for details.

Second, applications must perform a reconstruction pass after shad-
ing and before post-processing. This pass refines the results from
shading using the G-buffer information. The output of this re-
construction step is a screen-resolution, antialiased shading buffer
which can then be post-processed as normal. The shading buffer
resolution is usually the same as the screen or slightly higher, but
much lower than the geometry buffers.

Our reconstruction is a modified cross-bilateral filter similar to the
metric used by irradiance caching [Ward and Heckbert 1992]. The
filter accounts for differences in normal and position and is ex-
plained in more detail in Section 3.2.

In figure 3 we can see how our algorithm reconstructs one subpixel.
All shaded neighbors in a fixed radius are considered and interpo-
lated using the bilateral filter weights. After each sub-sample has
been reconstructed, we combine them all together using a box filter
for the final value of that pixel. More sophisticated multi-filters,
for instance a triangle kernel, could be employed for reconstruc-
tion. However, more complex filters have to be carefully tuned to
work well with the extremely small number of samples in the filter
support range.

Notice that due to the fixed radius of the filter support, a variable
number of shaded samples are used to reconstruct a subpixel sam-

Depth Normals Depth + Normals

Figure 4: Quality comparison between estimating the distance us-
ing normals only, depth only, and both. Some edges can be detected
using only depth, while others require normals. Scene courtesy of
DICE from the Frostbite 2 game engine.

Depth Planes

Figure 5: Quality comparison between position estimates based
depth only versus plane equations. The plane distance metric cap-
tures the small insets on the boxes slightly better.

ple. This reduces the total number of G-buffer loads and allows us
to re-order the instructions to improve cache hit rate.

Typically, the filter radius is extremely narrow to avoid blurring and
keep the number of texture lookups at a reasonable level. A larger
filter radius increases the reconstruction quality in theory, but it also
increases the worst-case error. We thus use only shaded samples
which are directly adjacent, allowing us to guarantee a screen-space
error of one pixel.

3.2 Distance metric

We take both position and normal change into account when com-
puting distance. For the position change, we can estimate the dif-
ference by using plane equations. For a source sample represented
by a plane with normal ~ns and a point ps and a target sample pt,
the position difference is δp = σp|(pt− ps) · ~ns|. We combine this
with the normal change term δn = 1− (~ns · ~nt), giving us the total
weight w = exp(−τ ∗max(δn, δp)).

In practice, we have to scale the depth by σp to account for different
depth ranges such that actual discontinuities result in values ≥ 1.
The τ factor determines how quickly the weights fall off and allows
us to easily increase the importance of the bilateral filter. We used
the same τ value (500) in all our testing.

Our algorithm allows several performance/quality trade-offs by
changing how the filter weights are computed. We can estimate
distance between source and target samples by simply comparing
depth values rather than evaluating the plane equation. This ap-
proximation loses some ability to correctly resolve differences in
tight corners or grooves (see Figure 5), but can significantly im-
prove performance.

We can also remove the δn term, which accounts for change in nor-
mal, from the distance metric. Removing normals has the great-
est impact on performance, reducing the read bandwidth by 50%
and simplifying much computation. We have found that using only
depth has a minor quality impact, and seems like a good trade-off
for games; see Figure 4 for a comparison.

Table 1 summarizes the performance of different optimizations us-
ing CUDA 3.2. Our timings do not include the cost of transfering
data between graphics and compute modes, which can vary widely
across APIs (Direct3D, DirectCompute, OpenGL, OpenCL, CUDA
C/C++, etc). Unless otherwise noted, all results use both depth and
normals.

Method
Output Resolution

1280×720 1920×1080
Planes & Normals 1.86 ms 4.15 ms
Depth & Normals 1.14 ms 2.53 ms
Normals only 0.95 ms 2.11 ms
Depth only 0.55 ms 1.23 ms

Table 1: SRAA performance for various distance metric optimiza-
tions, using 4× geometry samples on an NVIDIA Geforce GTX 480.

3.3 Assumptions and Limitations
We assume that the shading cost dominates the total render time.
In particular, generating the additional buffers must not introduce a
significant cost or the overhead of G-buffer generation will dom-
inate the reconstruction time. For example, we found that at
1280 × 720 it takes 1.4 ms to generate the additional samples to
bring the G-buffer up to 2560 × 1440 and 1.1 ms to perform the
antialiasing pass. The main “fat” G-Buffer took 1.1 ms in this case.
If the renderer spends more than 0.75 ms in lighting, the reduction
in shading computation pays for itself.

Our algorithm has one main limitation: in uniform regions it will
introduce blur to the output. This is because in areas with no nor-
mal & depth variation, our filter weights become all equal and the
reconstruction thus degrades into an extremely narrow blur. We re-
duce the blur by adding a strong screen-space falloff on the filter
weights, but some blurring is inevitable as we filter across pixels.
This is a common problem for filters which reconstruct by sam-
pling multiple pixels. This could be possibly fixed by identifying
such regions up front and masking them out, taking the noisy but
sharp underlying shading information.

3.4 Generating Latin Square G-buffers
We suggest two methods to create the auxiliary geometry buffers.
Our results were all produced by rendering four 1× G-buffers with
subpixel offsets applied to the projection matrix (Figure 6). A better
alternative would render one 4× rotated-grid MSAA render target,
incurring less overhead than our 3 additional G-buffer passes. Im-
plementing the MSAA pass would add implementation complexity
that is probably justified for a production setting but would not af-
fect the trends observed in our experiments.

We do not recommend rendering the G-buffers at 16× resolution
using an interleaving mask [Kircher and Lawrance 2009]. Current
hardware does not take advantage of the interleaving because it is
forced to render in 2 × 2 pixel blocks to compute derivatives for
texture filtering. Furthermore, at 1280×720, a 16×G-buffer would
require 88 MB, of which 75% would be wasted because it is never
read by our algorithm.

3.5 Implementation Details
The filter as described is heavy on texture reads and arithmetic op-
erations. For a 4× SRAA reconstruction, we read the G-buffers
58× per pixel (194 for 16×.) The filter is evaluated 25 (81) times.
We thus rely on the L1 and texture caches provided by NVIDIA’s
Fermi architecture to reduce the necessary bandwidth. To maximize
cache performance, we split our input data so it is read from both
L1 and texture caches, giving the aggregate bandwidth and size of

Figure 6: Interleaving 4 screen-resolution G-buffers rendered with
subpixel offsets to form one superresolution latin square pattern.

both caches. Especially with “fat” G-buffer formats, we have found
this to be extremely beneficial.

Tight kernels like our reconstruction filter are easily expressed as
a set of highly nested loops with a few branches, but we used a
small custom code generator to emit optimal CUDA C code for
our kernels, traversing the call graph during code generation. The
resulting code consists of a single basic block, giving the optimizer
maximum opportunity for reordering and other improvements.

4 Results
Figure 7 shows a scene with high geometric complexity processed
using our algorithm. All the detailed geometry along the roof or
the stair railing is actual geometry and can be thus processed us-
ing SRAA. This image uses a an ordered grid for supersampling,
meaning the G-buffers were simply generated at twice the resolu-
tion. Still, our algorithm is able to provide high-quality antialiasing.

In Figure 8 we show how our algorithm degrades gracefully to reg-
ular sampling once the shading frequency becomes too high. In par-
ticular, the lighting on the stairs is subsampled even at 16× super-
sampling and as such our algorithm has no chance to resolve them
properly. We fall back to a regular aliasing pattern in this case. No-
tice however how SRAA reconstructs the banister perfectly, which
has a low shading frequency.

Figure 9 highlights some interesting cases with high texture detail
and alpha-tested geometry. SRAA does not add excessive blur to
the image, as can be seen on the concrete, while also working cor-
rectly on alpha-tested geometry like the fences. On most geometry,
we get near 16× supersampled quality.

1× Shading + MLAA 1× Shading + New SRAA

Figure 10: Comparison with MLAA for small detail geometry. The
thin features on the bicycle as well as an the hook are undersam-
pled, so there is no continuous edge in the 1x input. MLAA thus
removes the edge. However, the G-buffers sparsely capture that in-
formation, so the edge gets correctly reconstructed by SRAA. Scene
courtesy of DICE from the Frostbite 2 game engine.

Figure 7: This scene contains many sources of geometric aliasing with low shading frequency, which are particularly well suited for SRAA.
For instance, it is able to correctly reconstruct the brick structure along the roof, as well as the bent fence at the far end. The image has been
reconstructed using 4 subsamples on an ordered grid to a target resolution of 1920×1080 pixels in 2.5 ms. Scene courtesy of Crytek from
Crysis 2.

Figure 8: Full scene from Figure 1 shown with the 1× shading input, output from 1× shading + SRAA, and a 16× shaded reference image.
SRAA quality is best at the edges between wide features, such as on the ceiling, pipe, and stairway railing. SRAA quality is lowest at features
that are below the Nyquist rate in the 1× shading input, such as the very thin insets on the crates and the inside corners of the stairs. The
output resolution is 640×360, reconstruction time was < 1 ms.

R
ef

er
en

ce
(1

6x
 s

ha
di

ng
)

O
ut

pu
t

S
R
A
A

In
pu

t
(1

x
sh

ad
in

g)

Figure 9: SRAA reconstructs subpixel edges while preserving sharp texture and shading features. The large image was processed by SRAA.
The details compare the 1x input, the SRAA output, and the 16x shaded reference. Scene courtesy of DICE from the Frostbite 2 game engine.
Zoom the electronic version of this paper to see pixel-scale detail. The reconstruction at the target resolution (1920×1080) took 2.5 ms.

SRAA can also resolve several cases where standard MLAA fails.
Figure 10 shows that MLAA has problems with pixel-sized geo-
metric features that are correctly handled by SRAA.

5 Discussion & Future Work

4 geometry samples 16 geometry samples 16 shaded samples

Figure 11: The left two images use SRAA with one shaded sample
and a varying number of geometric samples. With 16× geometric
samples, SRAA approaches the 16× SSAA reference on the right-
most image.

We present a new antialiasing algorithm which exploits subpixel ge-
ometry information to reconstruct subpixel shading for antialiasing.
SRAA runs in a few milliseconds on today’s GPUs, which makes

it practical for real-time rendering applications. It will also scale to
take advantage of increased bandwidth and computation on future
GPUs. The algorithm can work with any underlying sampling pat-
tern and number of shading samples. For example, it scales with
more geometric samples (as seen in Figure 11) and shading sam-
ples. Unlike MLAA, the algorithm’s time and space cost is inde-
pendent of the scene, except for rendering the G-Buffers where the
time increases with scene complexity.

We believe the next step is to combine ideas from SRAA and
MLAA. SRAA uses relatively inexpensive geometric information
to improve expensive shading results and is able to produce very
good edge antialiasing. MLAA’s heuristics often produce over-
blurring (Figure 2), but it is able to resolve shading edges that
SRAA cannot. These include texture, shadow, and specular high-
light boundaries. An algorithm that combines heuristic shading
weights with accurate geometric weights may be able to achieve
higher quality than either alone in practice.

Acknowledgements

We are grateful for assistance from Johan Andersson, Rendering Architect at DICE,
Anton Kaplanyan, Lead Researcher at Crytek, additional data from Vicarious Visions,
support and feedback from Rüdiger Westermann and NVIDIA colleagues David Tar-
jan, Timothy Farrar, Evan Hart, Eric Enderton, and Peter Shirley.

1× New SRAA 16×
G-buffer size 5.5 MB 22.1 MB 88.4 MB

G-buffer render time 1.1 ms 2.5 ms 5.0 ms
Shading time 10.0 ms 10.0 ms 160.0 ms
AA filter time 0.0 ms 1.9 ms 2.0 ms

Net shading time 11.1 ms 14.4 ms 167.0 ms
Table 2: SRAA adds minimal overhead compared to supersam-
pling. The table shows the cost of deferred shading at 1280 × 720
screen resolution under the schemes shown in Figure 1.

References

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 talks, ACM, New York, NY, USA, 1–1.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
reyes image rendering architecture. SIGGRAPH Comput. Graph.
21, 4, 95–102.

IOURCHA, K., YANG, J. C., AND POMIANOWSKI, A. 2009. A
directionally adaptive edge anti-aliasing filter. In High Perfor-
mance Graphics 2009, ACM, New York, NY, USA, 127–133.

JIMENEZ, J., MASIA, B., ECHEVARRIA, J. I., NAVARRO, F., AND
GUTIERREZ, D. 2011. Practical Morphological Anti-Aliasing.
GPU Pro 2. to appear.

KIRCHER, S., AND LAWRANCE, A. 2009. Inferred lighting: fast
dynamic lighting and shadows for opaque and translucent ob-
jects. In SIGGRAPH Symposium on Video Games, ACM, New
York, NY, USA, 39–45.

KOONCE, R. 2007. Deferred Shading in Tabula Rasa. GPU Gems
3, 429–457.

KOPF, J., COHEN, M., LISCHINSKI, D., AND UYTTENDAELE,
M. 2007. Joint bilateral upsampling. ACM Transactions on
Graphics (TOG) 26, 3, 96.

MCGUIRE, M. 2010. Ambient occlusion volumes. In Proc. of the
2010 ACM SIGGRAPH symposium on Interactive 3D Graphics
and Games, ACM, New York, NY, USA.

NICHOLS, G., PENMATSA, R., AND WYMAN, C. 2010. Inter-
active, multiresolution image-space rendering for dynamic area
lighting. Computer Graphics Forum (June), 1279–1288.

RESHETOV, A. 2009. Morphological antialiasing. In Proceedings
of the 2009 ACM Symposium on High Performance Graphics.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3-d shapes. SIGGRAPH Comput. Graph. 24, 4, 197–206.

SHISHKOVTSOV, O. 2005. Deferred shading in S.T.A.L.K.E.R.
GPU Gems 2, 143–545.

SHOPF, J., 2009. Mixed resolution rendering, March.
http://developer.amd.com/gpu assets/ShopfMixedResolutionRendering.pdf.

SLOAN, P.-P., GOVINDARAJU, N. K., NOWROUZEZAHRAI, D.,
AND SNYDER, J. 2007. Image-based proxy accumulation for
real-time soft global illumination. In Pacific Conference on
Computer Graphics and Applications, IEEE Computer Society,
Washington, DC, USA, 97–105.

SMASH, 2009. deferred rendering in frameranger, Novem-
ber. Blog posting http://directtovideo.wordpress.com/2009/11/13/deferred-
rendering-in-frameranger/.

WARD, G., AND HECKBERT, P. 1992. Irradiance gradients. In
Third Eurographics Workshop on Rendering, 85–98.

YANG, L., SANDER, P. V., AND LAWRENCE, J. 2008. Geometry-
aware framebuffer level of detail. Comput. Graph. Forum 27, 4,
1183–1188.

YOUNG, P. 2006. Coverage sampled an-
tialiasing. Tech. rep., NVIDIA, Oct.
http://developer.download.nvidia.com/SDK/9.5/Samples/DEMOS/Direct3D9/src/
CSAATutorial/docs/CSAATutorial.pdf.

Code Listing
This is a CUDA implementation of SRAA for 4× Latin-square G-
bufffers, using depth and normals in the bilateral filter. In practice
we statically evaluate all branches and loops in our code generator.

1 f l o a t 3 normal (i n t x , i n t y)
{ re turn n o r m a l B u f f e r . Get (x , y) ∗ 2 . 0 −

m a k e f l o a t 3 (1 , 1 , 1) ; }

f l o a t d e p t h (i n t x , i n t y)
6 { re turn d e p t h B u f f e r . Get (x , y) ; }

f l o a t b i l a t e r a l (f l o a t 3 cen te rN , f l o a t c e n t e r Z ,
f l o a t 3 tapN , f l o a t t apZ) {

re turn exp(− s c a l e ∗ max (
11 (1 . 0 − dot (cen te rN , tapN)) ,

d e p t h S c a l e ∗ abs (c e n t e r Z − t apZ))) ;
}

/ / I t e r a t e t h e ‘ ‘ c e n t e r ’ ’ (cx , cy) o f t h e f i l t e r
16 / / o ve r t h e samples i n t h e p i x e l a t (x , y)

f l o a t w e i g h t s [9] = {0} ;
f o r (i n t cy = y ; cy < (y + 2) ; ++cy) {

f o r (i n t cx = x ; cx < (x + 2) ; ++cx) {

21 f l o a t 3 N = normal (cx , cy) ;
f l o a t Z = d e p t h (cx , cy) ;

f l o a t tmpWeights [9] = {0} ;
f l o a t sum = 0 . 0 f ;

26
/ / I t e r a t e over t h e n e i g h b o r i n g samples
f o r (i n t j = 0 ; j < 3 ; ++ j) {

f o r (i n t i = 0 ; i < 3 ; ++ i) {

31 / / I f i n s i d e f i l t e r s u p p o r t
i f ((abs (i − 1 − cx)) <= 1) &&

(abs (j − 1 − cy)) <= 1)) {
i n t tapX = x + i − 1 ;
i n t tapY = y + j − 1 ;

36
/ / Compute t h e f i l t e r w e i g h t
f l o a t w = b i l a t e r a l (N, Z ,

d e p t h (tapX , tapY) , normal (tapX , tapY))) ;

41 tmpWeights [i + j ∗ 3] = w;
sum += w;

}
}

}
46 f o r (i n t t = 0 ; t < 9 ; ++ t)

w e i g h t s [t] += tmpWeights [t] / sum ;
}

}

51 / / Apply t h e f i l t e r
f l o a t 3 r e s u l t = m a k e f l o a t 3 (0 , 0 , 0) ;
f o r (i n t j = 0 ; j < 3 ; ++ j)

f o r (i n t i = 0 ; i < 3 ; ++ i)
r e s u l t += w e i g h t s [i + j ∗ 3] ∗ 0 . 2 5 ∗

56 c o l o r B u f f e r . Get (x + i − 1 , y + j − 1) ;

